Nearest Neighbor Classifier Based on Nearest Feature Decisions
نویسندگان
چکیده
High feature dimensionality of realistic datasets adversely affects the recognition accuracy of nearest neighbor (NN) classifiers. To address this issue, we introduce a nearest feature classifier that shifts the NN concept from the global-decision level to the level of individual features. Performance comparisons with 12 instance-based classifiers on 13 benchmark University of California Irvine classification datasets show average improvements of 6 and 3.5% in recognition accuracy and area under curve performance measures, respectively. The statistical significance of the observed performance improvements is verified by the Friedman test and by the post hoc Bonferroni–Dunn test. In addition, the application of the classifier is demonstrated on face recognition databases, a character recognition database and medical diagnosis problems for binary and multi-class diagnosis on databases including morphological and gene expression features.
منابع مشابه
Fusion of multiple approximate nearest neighbor classifiers for fast and efficient classification
The nearest neighbor classifier (NNC) is a popular non-parametric classifier. It is a simple classifier with no design phase and shows good performance. Important factors affecting the efficiency and performance of NNC are (i) memory required to store the training set, (ii) classification time required to search the nearest neighbor of a given test pattern, and (iii) due to the curse of dimensi...
متن کاملDiagnosis of Tempromandibular Disorders Using Local Binary Patterns
Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...
متن کاملImproving the Behavior of the Nearest Neighbor Classifier against Noisy Data with Feature Weighting Schemes
The Nearest Neighbor rule is one of the most successful classifiers in machine learning but it is very sensitive to noisy data, which may cause its performance to deteriorate. This contribution proposes a new feature weighting classifier that tries to reduce the influence of noisy features. The computation of the weights is based on combining imputation methods and non-parametrical statistical ...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملComparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. J.
دوره 55 شماره
صفحات -
تاریخ انتشار 2012